The last half-century:

a perspective on experimentation in information retrieval

Stephen Robertson

Microsoft Research and City University

On the tradition

Cranfield

Two Cranfield experiments

Relevance, recall, precision

Medlars

Evaluation of the Medlars Demand Search Service

Portable test collections

The 'ideal' test collection

On the tradition

The Book: *Information Retrieval Experiment*Trying to get at user interaction
TREC

The ideal test collection writ large

Search engine training

Multiple parameters

Machine learning

On the tradition

Some TREC contributions

Competition and the 'unseen' principle

The Pool method

Measures and experimental methods

The collections

The TREC influence

Spin-offs (CLEF, NTCIR, INEX &c)

Search engine training

On having a tradition

Traditions are good and bad

Guidelines or straightjacket

Pros of the Cranfield-TREC tradition

Understanding of evaluation

Methods

Data

High standards

On having a tradition

Cons of the Cranfield-TREC tradition

Much to learn

hard for a PhD student

Hard to do experiments well

Bias towards laboratory experiments

... and against user experiments

Hard to get papers accepted

Only one kind of experiment

On its current status

Dominant!

- 1. Experiments at TREC / CLEF / DUC &c
- 2. Experiments using data / methods from the above
- 3. Theory and models
- 4. Publication (of all of the above)
- 5. Operational systems

On the things that stay the same

```
Documents (real ones)
```

Requests representing information needs

Relevance judgements on individual documents

Measures

relevance-based – recall, precision &c.

On the things that change

Documents

Requests

Relevance judgements

Measures

... and then some

Documents

Books on shelves Bibliographic units Webpages Virtual webpages Locations Passages Answer fragments Logical units Inferred answers

Requests

Note: cannot divorce from relevance

Ideal: catch a user with a need

(archetype: the 1968 Medlars experiment)

Source documents

Constructed from lists

Actors

Logged queries

Relevance judgements

1. Who?

User / need

Substitute judge with description of need

Authoritative source of information

Judge interpreting different needs

Relevance judgements

2. What scale?

Grades

Binary

Grades

Grades representing user groups

Types of need

Statistical prevalence

Relevance judgements

3. Which docs?

A11

External source(s)

Pools

Small pools

Sampled

The problem of collection building

Sets

Recall and precision

Fbeta

Utility functions

Ranked output

Recall-Precision curve

Recall-Fallout (ROC) curve

A point on the curve

P@n

RPrec

MRR

Measures on the whole curve

Area under ROC = pairwise error probability

Normalized recall / precision

Average precision

Non-interpolated AP

Some criteria for measures

Set- or rank-based

Top-heavy

User-oriented

Realistic

Transparent

Experiment-oriented

Reliable

Valid

Some criteria for measures

Decision-orented

Reliable system ranking

Valid system ranking

Optimization-oriented

Smooth, differentiable?

Convex?

Reliable optimum identification

Valid optimum identification

... and then some

Experimental design

Overfitting and all that

'Does it work'

'Does x work better than y'

Optimization

Train-test-holdout; cross-validation

Size of model

Final remarks

The tradition that began with Cranfield is alive and kicking, half a century later.

It carries both opportunities and constraints.

It presents two main problems:

- How and when to push its boundaries
- How and when to transcend it

Neither of these should involve throwing it away!